Visualization¶
-
class
visualization.visualization.CompareStatistics(dataframes_dict: dict)¶ Statistic explorer
The class contains methods for exploring the statistics of a given feature.
Parameters: dataframes_dict (dict) – a dictionary of pandas dataframes e.g. {“train”: train_dataframe, “test”: test_dataframe} -
__init__(dataframes_dict: dict)¶ Parameters: dataframes_dict – A dictionary of pandas dataframes e.g. {“train”: train_dataframe, “test”: test_dataframe}
-
check_feature_valid(feature_nr: int) → bool¶ Feature’s value validator
The function validate if it is possible to derive the statistical properties of a given feature.
Parameters: feature_nr (int) – The index of the column where the feature is. Returns: True if it is possible to calculate the statistical properties of the given feature. Otherwise false.
-
compare_statistics_function(feature_nr: int)¶ Statistic plotter
This function plots the statistical values of a certain feature among all given datasets in a single graph.
Parameters: feature_nr (int) – The index of the column where the feature is.
-
-
visualization.visualization.histogram(data: pandas.core.series.Series)¶ Histogram plotter
This function plots the histogram of the numeric values of a certain feature when calling the Interactive data explorer function in the preprocessing package.
Parameters: data (pd.Series) – The values of the given feature/column from the dataset
-
visualization.visualization.explore_missing_values(dataframes_dict: dict, number_of_features: int)¶ Missing values explorer
This function plots the amount of missing values for given amount of features among all datasets.
Parameters: - dataframes_dict (dict) – A dictionary of pandas dataframes e.g. {“train”: train_dataframe, “test”: test_dataframe}
- number_of_features (int) – The number of the features that should be shown in the plot.
-
visualization.visualization.compare_statistics(dataframes_dict: dict)¶ Interactive statistic explorer
This function is designed to be run in a Jupyter notebook. The user can go through the feature interactively using a slider.
Parameters: dataframes_dict (dict) – A dictionary of pandas dataframes e.g. {“train”: train_dataframe, “test”: test_dataframe}